
Journal of Neuroscience Methods 361 (2021) 109265

Available online 24 June 2021
0165-0270/© 2021 Elsevier B.V. All rights reserved.

Classification of patients with AD from healthy controls using 
entropy-based measures of causality brain networks 

Yuanchen Wu a,1, Yuan Zhou b,*,1, Miao Song a 

a School of Information Engineering, Shanghai Maritime University, Shanghai, China 
b School of Logistics Engineering, Shanghai Maritime University, Shanghai, China   

A R T I C L E  I N F O   

Keywords: 
Alzheimer’s disease 
Granger causality 
Sample entropy 
Causality pattern 

A B S T R A C T   

Background: Machine learning and pattern recognition have been widely used in rs-fMRI data to investigate 
Alzheimer’s disease (AD). However, many previous methods extracted discriminative features based on func-
tional correlations, which may ignore the asynchronous causality influence of neural activities. 
New method: We propose a novel method for AD diagnosis using Sample Entropy to measure the neural 
complexity of the brain causality network. Granger Causality analysis with a sliding time window was applied on 
rs-fMRI data of 29 AD patients and 30 cognitive normal (CN) controls to compute the whole brain’s causality 
series. We further grouped these causality series into clusters by agglomerative hierarchical clustering algorithm 
and computed Sample Entropy of the clusters as the classification features. 
Results: We explored four different classifiers, i.e., XGBoost, SVM cluster, Random Forest, and SVM, based on the 
above features. An accuracy of 89.83%, with a sensitivity of 90.00% and a specificity of 89.66%, was achieved 
with the optimal feature subsets using the SVM classifier. 
Comparison with existing methods: With the same dataset, the performances of the proposed method were 
generally higher than those of conventional methods for AD classification based on Pearson’s correlation 
network, dynamic Pearson’s correlation network, High-order correlation network, and causality correlation 
network. 
Conclusions: Our method demonstrates the measure of Sample Entropy with causality connection as a powerful 
tool to classify AD patients from CN controls, and provides a deep insight into the neuropathogenesis of AD.   

1. Introduction 

Alzheimer’s Disease (AD) is a severe brain disorder among older 
adults, resulting in slow and irreversible intellectual deteriorations 
(Mega et al., 1996). Until now, about 44 million people worldwide suffer 
from this disease. As it has no current cure, early diagnosis is the only 
way to curb progression and improve the quality of life for AD patients. 
Unfortunately, the symptoms of AD vary from person to person, from 
memory impairments to wording confounding, to vision/spatial 
perceptual disturbance, to reasoning problems. This volatility and 
complexity of AD symptoms greatly challenge the routine detection 
methods based on patients’ medical history, genetic history, and clinical 
observations. Thus, machine learning algorithms have been gradually 
introduced in medical practice to detect AD in terms of functional 
magnetic resonance (fMRI), cerebrospinal fluid, and blood indicators. 

The resting-state fMRI, which uses blood oxygen level-dependent 
(BOLD) signal as a neurophysiological indicator, is widely used to 
study AD. By calculating the correlations of the BOLD signal of different 
brain regions, the functional connectivity (FC) brain network can be 
constructed to successfully classify AD/MCI patients (for a review, see 
(Dennis and Thompson, 2014)). So far, many FC-based methods have 
been proposed in terms of various network structures and correlation 
computations. For instance, researchers have introduced some graph 
theories, such as visibility graph (Gao et al., 2020) and "small world" 
graph (Sanz-Arigita et al., 2010), to discover topological features of 
low-level FC network structure. On the other hand, some researchers 
have explored the correlation computation methods, e.g., sparse repre-
sentation (Lv et al., 2015), and High-order Pearson’s correlation based 
on dynamic low-level FC (Chen et al., 2016a), to describe the 
multi-regional and complex interactions among different brain areas. 
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Most of the above methods achieved good classification results, sug-
gesting that FC is an effective and robust method to characterize dis-
rupted neural activities of AD/MCI. However, it also should be noted 
that FC, as a non-directional measure, cannot capture the causality in-
fluences of different brain areas, which may lead to ambiguous in-
terpretations of information flow for the brain. 

To overcome the shortcoming of FC, Granger Causality connectivity, 
which can determine whether one neural signal series would influence 
another, has been introduced to examine neural alterations between 
MCI/AD patients and normal controls (Liu et al., 2012; Liang et al., 
2014; Khazaee et al., 2017). For instance, Liu et al. (2012) found that the 
number of causality connections decreases in AD patients compared to 
those in the CN controls. In contrast, Liang et al. (2014) observed both 
increments and decrements of causality connections in different brain 
regions in MCI patients. Recently, Granger Causality has been further 
applied to identifying patients with MCI/AD using machine learning 
methods. Khazaee et al. (2017) are the first to construct directional 
graphs of causality connectivity for classification between AD patients 
and CN controls. They calculated topological measures of the directional 
graph (e.g., degree, betweenness centrality, and flow efficiency) as 
features, and finally achieved 71.95% classification accuracy on auto-
matic anatomical labeling (AAL) template. Wang et al. (2017a, 2017b). 
further extended Khazaee’s work based on causality network, and they 
systematically compared the effect of various graphical features and 
corresponding classification methods on classification results. These 
studies proved the validity of identifying AD patients by the causality 
connectivity. However, they only focus on topological and static features 
in terms of a directional graph without sufficiently characterizing the 
neural complexity and dynamic reconfiguration in the brain. 

Previous studies have applied entropy metrics to quantify the 
complexity of the BOLD signals (Wang et al., 2017a, 2017b; Niu et al., 
2018; Toussaint et al., 2014). Wang et al. (2017a, 2017b) observed the 
decreasing trend of permutation entropy from CN controls to AD pa-
tients, suggesting the lower neural complexity of AD patients than that 
of normal controls. Consistent with Wang et al.’s research, Niu et al. 
(2018) performed a multi-scale entropy analysis and found significant 
differences at multiple time scales in multi-regions (e.g., thalamus, 
insula, lingual gyrus, and inferior occipital gyrus, middle temporal 
gyrus) between CN, early MCI, late MCI, and AD. Moreover, Toussaint 
et al. (2014) combined the entropy measures with a graph-theoretical 
approach, and reported a decreased antero-posterior integration in AD 
patients compared to elderly controls, specifically in the pre-
cuneus–posterior cingulate region. These studies demonstrated the ef-
ficacy of entropy to represent the complexity of the brain. 

Inspired by causality connectivity and entropy, we propose a novel 
method combining the Sample entropy (SampEn) (Richman and Moor-
man, 2000) with dynamic causality analysis for AD classification:  

1. We calculated whole-brain causality connections for every pairwise 
regions-of-interests (ROIs). Different from the conventional methods 
that the causality connection was computed based on the entire time 
series, and a fixed scalar value was obtained regardless of time, we 
used a sliding window approach to model the dynamic causality 
connections. In this way, we expected to capture more rich temporal 
variations of the causality connectivity network. 

2. We grouped the obtained causality connections into different clus-
ters by a clustering algorithm and calculated SampEn values for 
every cluster.  

3. The SampEn values of all clusters were concatenated to form a 
feature vector, and this vector was subject to various machine 
learning algorithms to explore the optimal classification results. 

Compared with most AD classification methods based on the non- 
directional functional connectivity (Gao et al., 2020; Sanz-Arigita 
et al., 2010; Chen et al., 2016a; Wee et al., 2012), the proposed 
method has better neurological interpretations for the observed 

biomarkers by introducing the causality connections to account for the 
directional interactions of the brain. Moreover, in the proposed method, 
the features are extracted based on clusters of causality connections 
instead of the original causality connectivity network, which will help to 
better capture the pattern differences of neural activity and lower the 
computation load in the classification process. 

2. Materials and methods 

2.1. Materials and methods 

All subjects selected in this study were from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) public database, including 30 AD sub-
jects (15 females, 15 males, 75.3 ± 5.9 years) and 30 CN controls (15 
females, 15 males, 73.7 ± 7.6 years). One female subject was excluded 
because of large head movements (more than 2.5 mm), leaving 59 
subjects for further analysis. Both groups of subjects were age-matched 
(p = 0.48) and acquired with 3T Siemens Trio Tim scanner under the 
same protocol (T2*-weighted, TR = 3000 ms, TE = 30 ms, Flip 
Angle = 90◦ , imaging matrix = 448 pixels * 448 pixels, 48 slices, 197 
volumes, and Slice Thickness = 3.4 mm). For every subject, his/her T1- 
weighted sequence (TR = 2300 ms, TE = 3.0 ms, Flip Angle = 9.0◦ ) was 
acquired for co-registration in the preprocessing stage. 

For each subject, the first 17 volumes of each subject were discarded 
for magnetic field’s instability at the beginning and allowing for their 
adaption to the experimental circumstance. On the rest 180 volumes, we 
used SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8) and 
REST (http://restfmri.net/forum/RESTplusV1.2) run on MATLAB 
R2013b (The MathWorks, Inc., Natick, MA, USA) to perform the stan-
dard preprocessing, which includes slicing time correction, head 
movement alignment using a six-parameter rigid-body spatial trans-
formation (Friston et al., 1995), spatial standardization to the Montreal 
Neurological Institute (MNI) space, spatial smoothing with a Gaussian 
filter of 4 mm full width at half-maximum (FWHM), and low-band pass 
filtering (0.01 Hz ≤ f ≤ 0.08 Hz). After that, we removed the following 
possible nuisance covariates through linear regression: (1) the average 
whole-brain signal over the entire brain, (2) white matter and cerebro-
spinal fluid signal, (3) linear drift. Finally, the preprocessed images were 
parcellated into 90 ROIs based on AAL template and extracted corre-
sponding mean BOLD signals. 

2.2. Proposed framework 

As shown in Fig. 1, we summarize our proposed method into three 
steps: brain network analysis, causality pattern clustering, and classifi-
cation. The first step includes the matrix construction of a dynamic 
causality network (Section 2.2.1). The second step involves pattern 
extraction and entropy calculation (Section 2.2.2). The final step focuses 
on the concatenation of feature vectors, optimal parameters selection of 
classification, and performance evaluation (Section 2.2.3). 

2.2.1. Brain network analysis 
To ensure the stationarity of the time series before Granger Causality 

analysis, we employed differential processing (Granger, 1969) to 
smooth the BOLD signal series. Meanwhile, considering the possibility of 
the original sequence’s autocorrelation, we selected the lag order cor-
responding to the smallest Akaike information criterion (AIC) (Akaike, 
1974) as the optimal lag order. 

Then, we adopted sliding time window approach for dynamic cau-
sality analysis. Each preprocessed BOLD signal series was divided into 
K = (⌊(n − w)/s ⌋+1 ) subseries, where n is the number of all image 
volumes, w is the window width, and s is the step size of each move. We 
denote the l-th subject’s k-th segmented BOLD subseries of the i-th ROI 
of as xl

i(k). 
For each sliding window, the causality connection between Xt and Yt 
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ROIs at time t was calculated by Bivariate Granger Causality using 
Statsmodels 2.1.0 (https://www.statsmodels.org/stable/index.html) on 
Python 3.8, with the autoregressive model as shown in Eq. (1): 

Yt =
∑p′

p=1
ApX(t− p) +

∑p′

p=1
BpY(t− p) +CZt + εt  

Xt =
∑p′

p=1
A′

pY(t− p) +
∑p′

p=1
B′

pX(t− p) +CZt + ε′

t (1)  

where p′ is the model order, Ap, A
′

p,Bp,B
′

p, and C are model coefficients, 
Zt is exogenous variables, and εt and ε′

t are the prediction residual errors. 
If Ap is nonzero, which means X helps to predict Y, then it is said X causes 
Y, and vice versa (Granger, 1969). The F test was used to assess the 
strength of causality connection between X and Y ROIs. 

We computed the dynamic causality connections of every pairwise 
ROIs for each subject. The causality connection of the k-th sliding win-
dow between the i-th and the j-th ROIs of the l-th subject is denoted as 
Eq. (2): 

Cl
i,j(k) = GC

(
xl

i(k), xl
j(k)

)
(2) 

The dynamic causality series Si,j was obtained by concatenating all 
windows’ causality connections between the i-th and the j-th ROIs of 59 
subjects, as shown in Eq. (3), and the length of Si,j is 59 ∗ K. 

Si,j =
[
C1

i,j(1),…,C1
i,j(K),C2

i,j(1)…,C2
i,j(K),…,C59

i,j (1)…,C59
i,j (K)

]
(3) 

Finally, we stacked all Si,j to form a large-scale matrix Z of 90*89 
rows and 59 ∗ K columns as shown in Eq. (4), which contains the dy-
namic causality connections of all pairwise ROIs of 59 subjects. 

Z =

⎛

⎜
⎜
⎝

S1,2
S1,3
⋮

S90,89

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1
1,2(1),…,C1

1,2(K),…,C59
1,2(1)…,C59

1,2(K)

C1
1,3(1),…,C1

1,3(K),…,C59
1,3(1)…,C59

1,3(K)

⋮
C1

90,89(1),…,C1
90,89(K),…,C59

90,89(1)…,C59
90,89(K)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)  

2.2.2. Causality pattern clustering 
In order to capture the distinctive characteristics of neural activity 

pattern, agglomerative hierarchical clustering (Ward, 1963) was applied 
to group similar causality connections (i.e., the dynamic causality con-
nections between the i-th and the j-th ROIs of all subjects) from the 
large-scale Z into the small-scale clusters. The advantages of agglomer-
ative hierarchical clustering include no initialization, less dependence 
on hyperparameters, and robustness of clustering processing (Chen 
et al., 2016b). However, it should be noted that the clustering algorithm 
may lose the directionality of the causality connection. It is likely that 
the concatenated diagonal symmetrical connections (e.g., Si,j and Sj,i) 
will be clustered in the same group, which will bring about the confusion 
about the causality connection’s directionality. To solve this problem, 
we separated Z into two matrices: L =

(
S1,2, S1,3,…,Si,j

)
, i ∈ [1,89], j ∈

[2, 90], i < j and U =
(
S2,1, S3,1,…,Si,j

)
,i ∈ [2,90],j ∈ [1, 89],i > j, and then 

grouped them to u clusters, respectively. For both U and L, the initial 
number of clusters is (8100-90)/2 = 4005, where 8100 is the total 
number of causality connections, and 90 is the number of excluded 
pairwise causality connections between the same ROI. In the above 
procedure, we finally generated different numbers of clusters from 100 
to 400 to achieve the optimal clustering effect for further classification, 
which is detailed in Section 3.1. 

Then, we calculated SampEn (Yentes et al., 2013) value of each 
cluster to construct the feature vector for each subject. SampEn is a 
modification of approximate entropy and has the merit of independence 
of data length. It can be used to measure the complexity of physiological 
time-series signals, such as heart rate variability and EEG data. Here, we 
used it to assess the neural complexity of each cluster with similar 
causality connections, and the SampEn value of one of the l-th subject’s 
clusters was calculated as follows:  

1) Suppose this cluster includes q causality series and each series has K 
subseries partitioned by sliding windows, we concatenate them into 
a periodic time series P: 

P =
(

Cl
1(1),…,Cl

1(K),Cl
2(1),…,Cl

2(K),…,Cl
q(1),…,Cl

q(K)
)

(5)  

Fig. 1. The proposed framework for AD classification.  
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Then, we denote P as Q for easy demonstration: 

Q = (c(1), c(2),…, c(q ∗ K) ) (6)  

Here, the c(1), .., c(q ∗ K) corresponds to each element in the series 
P.  

2) Reconstruct Q with m consecutive data points into N = (q ∗ K − m+1)
subseries. Each subseries can be denoted as Q(v): 

Q(v) = (c(v), c(v+ 1), c(v+ 2),…, c(v+m − 1) ), v = 1, 2,…,N (7)    

3) Calculate the distance dvv′ between Q(v) and other Q(v′

), v′

= 1, 2,… 
,N by Chebyshev distance, that is, 

dvv′ = max|c(v+ k) − c(v
′

+ k) |, k = 0, 1,…m − 1, v ∕= v
′ (8)    

4) Given a threshold f = r ∗ SD (r is the similarity criterion and SD is the 
standard deviation of the original Q), Dm

v represents the proportion of 
dvv′ < f under m data points.  

5) By averaging across all Dm
v , we get 

Sm =
1

N − m
∑N− m

i=1
Dm

v (9)  

and 

Sm+1 =
1

N − m
∑N− m

i=1
Dm+1

v (10)    

6) The SampEn value of this cluster is calculated as 

SampEn = − ln
(
Sm+1/Sm) (11) 

Following the above steps, we can obtain all clusters’ SampEn values 
of every subject, with a larger SampEn value corresponding to a more 
complex neural pattern in that cluster and a smaller one representing the 
decreased complexity. Here, the m and r are two key parameters to 
calculate SampEn values, thus we discussed the selection of these two 
parameters in Section 3.2. 

2.2.3. Classification 
We used SampEn values of causality connection clusters obtained in 

Section 2.2.2 as the potential features for the subsequent AD classifi-
cation. Considering that excessive features may increase the training 
load and decrease the generalization performance of models, we adop-
ted variable importance measures (VIM) to reduce redundant features 
by Random Forest (Bi et al., 2018), with Gini index evaluating the VIM 
value. A higher VIM value corresponds to a more discriminative feature, 
which means it is more helpful for the AD classification. In this process, 
we ranked the VIM value of every feature from high to low and set a 
threshold a to remove the redundant features below a. The a was varied 
in the range [0.0001,…,0.001] to get an optimal feature subset where 
features are discriminative for classification. Under the optimal condi-
tion (u = 300,w = 20) (see Section 3.1), we selected 13 SampEn values 
as final features (the corresponding sample-to-feature ratio is 59:13) 
after the VIM dimensionality reduction. 

After dimensionality reduction, we used Random Forest, Extreme 
Gradient Boosting (XGBoost), Support Vector Machine (SVM), and SVM 
cluster (Bi et al., 2018) by scikit-learn 0.23 (https://scikit-learn.org/) to 
train the AD classification model. To obtain the optimal performance, it 
is crucial here to determine the optimal parameters (i.e., the window 
size w and cluster number u) and the corresponding hyperparameters of 
each method (e.g., the number of estimators of the classifier). We 
selected the optimal combination of parameters and hyperparameters by 
grid search cross-validation, with the models’ optimal parameters being 
varied in the following ranges: w ∈ [20,…,80], u ∈ [100,…,400], and 

the optimal hyperparameters being determined for each method as 
described below. 

Specifically, for SVM, we examined different kernel functions (i.e., 
Gaussian Radial Basis Kernal, Poly Kernel, and Sigmoid Kernal) with 
their corresponding hyperparameters (e.g., the penalty term coefficient, 
intercept, and gamma). For Random Forest classifier, we determined the 
estimator number, the max depth, and the maximum leaf node, while 
other hyperparameters were set to default values. For SVM cluster, we 
used 150 estimators (the optimal number), and separately trained them 
with randomly selected partial samples under their optimal hyper-
parameters (the same way as SVM classifier). To reduce the effect of 
poor classifiers, each classifier was set a voting weight by a z-score 
transformation in terms of its classification accuracy. The final result is 
determined by the majority of classifiers’ predictions. For XGBoost, we 
selected hyperparameters for the tree booster (e.g., the learning rate, the 
estimator number, the maximum depth, and the minimum child 
weight), and tuned them respectively. In the above classifiers, we 
introduced regularization for SVM, SVM cluster, and XGBoost classifiers 
with squared L2 penalty. 

All these methods were evaluated by LOOCV (Leave-one-out Cross 
Validation), and their performances are shown in Table 1. The accuracy 
(ACC), sensitivity (SEN), specificity (SPE), and F1-score were used to 
evaluate the performances of the four methods. Among the four 
methods, SVM achieved the best performance, SVM cluster and Random 
Forest obtained slightly lower performances than SVM, and XGBoost 
obtained the lowest performances. We plotted the learning curves 
(Perlich, 2010), which show the predictive generalization performance 
as a function of the number of training examples, with 5-fold 
cross-validation to explore the differences between the four methods. 
It is found that SVM (Fig. 2a), SVM cluster (Fig. 2b), and Random Forest 
(Fig. 2c) achieve good learning effect, with the variance of their training 
and test scores gradually decreases with the increase of training samples. 
In contrast, XGBoost shows a relatively high variance between training 
and test scores, indicating the poor learning effect in comparison with 
the other three methods. We further plotted the curve of loss against 
training epochs for XGBoost (Fig. 3). It can be seen that the training loss 
gradually decreases while the test loss always maintains a high level, 
suggesting the XGBoost suffers from overfitting. We suggest that 
XGBoost, as a complex iterative ensemble model, may require a large 
number of samples to achieve good performances. The SVM method is 
more suitable for the fMRI classification task where the sample size is 
generally small. 

3. Experimental results and discussion 

3.1. Effect of sliding window width and clustering number on accuracy 

The width of the sliding window w and the number of clusters u are 
key factors to affect the classification performance. If a small window 
width w is selected, it is high possibility that the noise signals are 
mistakenly taken as causality variations, though the possible dynamic 
causality can be better detected. Conversely, with a larger width w, it 
can get a more stable causality connection but easily lose causality 
variations. Meanwhile, the number of clusters u would also modulate the 
classification accuracy. If we divide the causality network into a big 
number u of clusters, each cluster will only include few causality series 
and cannot well represent a neural pattern. Conversely, with a small 

Table 1 
Performance comparison among the four methods.   

ACC (%) SEN (%) SPE (%) F-Score 

XGBoost  79.66  70.00  89.66  0.7777 
SVM cluster  84.75  86.67  82.76  0.8525 
Random Forest  86.44  86.66  86.20  0.8667 
SVM  89.83  90.00  89.66  0.8852  
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number u of clusters, each cluster would contain more causality series 
and obscure its unique characteristics. 

In this study, we used grid search cross-validation to find the optimal 
w and u (mentioned in Section 2.2.3). To be specific, we changed the 

cluster number u from 100 to 400 with a step 100, and width w from 20 
to 80 with a step 20 to find the best classification performance. Fig. 4 
shows the classification accuracy under various parameter combinations 
with SVM. The best performance is 89.83% when w = 20 and u = 300, 
and the worst performance is 67.8% when w = 60 and u = 100. We note 
that the cases of w = 80 show stable and high performances. This may be 
due to that the sliding window with a big width catches more global 
features, thus obtaining relatively better performance. 

Fig. 2. The learning curves with 5-fold cross-validation of (a) SVM, (b) SVM clusters, (c) Random Forest and (d) XGBoost (training accuracy: red; test accuracy: 
green; standard deviation: shaded area). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The loss against training epochs curve of XGBoost. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 4. The classification accuracy (%) in terms of the number of clusters u and 
width of the sliding window w with SVM model. 

Y. Wu et al.                                                                                                                                                                                                                                      
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3.2. Effect of the parameters of SampEn on accuracy 

The number of data points m and the similarity criterion r are two 
essential parameters for SampEn’s calculation, and further influence the 
classification accuracy. So, it is important to select suitable parameters 
of m and r. Some researchers have discovered that m = 2 and 0.1 < r <
0.25 show good statistical power when the series length is larger than 
200 (Yentes et al., 2013; Wee et al., 2016; Echávarri et al., 2011). 
Considering the length of our concatenated series is larger than 200, we 
fixed m at 2 and examined r in [0.13,0.25]. Fig. 5 shows the effect of r on 
accuracy under SVM classifier with its optimal hyperparameters. It is 
found that the optimal result has been achieved at r = 0.2. Therefore, m 
= 2 and r = 0.2 are fixed when calculating each clusters’ SampEn 
values. 

3.3. Classification performance 

In this paper, we compared the performance of our framework with 
conventional methods which are based on the Pearson’s correlation 
network (PCN) (Wee et al., 2016), dynamic Pearson’s correlation 
network (DPCN) (Wee et al., 2016), High-order correlation network 
(HOCN) (Chen et al., 2016a), and causality correlation network (CCN) 
(Khazaee et al., 2017), respectively. Among them, both PCN and DPCN 
methods used the low-level brain functional network for classification, 
with Pearson’s correlation representing pairwise functional connectivity 
among brain areas. The distinction between them is that, in PCN, the 
entire BOLD time series was directly used to calculate the functional 
connectivity; while in DPCN, the time sliding window is introduced to 
characterize the dynamic variations of the functional connection 
network. In contrast, HOCN is a recently proposed method based on 
DPCN, which further used the high-level correlation between two dy-
namic functional connection series to construct a high-order network. 
Finally, different from the above three methods using the 
non-directional functional connection network, the CCN-based method 
constructed a directional causality connection network and extracted its 
graphical features, such as indegree and outdegree of nodes, for the 
automatic classification. 

To facilitate the comparison, we implemented the above four 
methods using Python 3.8 and trained them with the same dataset 
described in Section 2.1. As we can see from Table 2, the performance of 
DPCN is higher than those of PCN, suggesting that dynamic connectivity 
analysis captures the neuropathological biomarker for the AD classifi-
cation. The CCN method using causality connections achieves higher 
performance than that of DPCN. Moreover, the HOCN achieves higher 
performance than that of DPCN and CCN. The overall performance of 
our method is slightly higher than those of HOCN, with the approxi-
mately same accuracy and sensitivity, and a 3% increase in specificity. 

3.4. Temporal complexity 

We analyzed the temporal complexity of our proposed method. As 
described above, it includes three steps of feature extraction, i.e., brain 
network analysis, causality pattern clustering, and SampEn computa-
tion. Among the three steps, the SampEn computation is most time- 
consuming and therefore dominates the temporal complexity. Because 
the SampEn needs to be computed for every cluster of all subjects, the 
overall temporal complexity of SampEn computation can be written as 
O(u ∗ S) ∗ O(f(SampEn) ), where u denotes the number of clusters (see 
Section 2.2.3), S denotes the number of subjects, and O(f(SampEn) )
denotes the complexity of one SampEn computation. 

In terms of the definition of SampEn, the complexity of one SampEn 
computation is determined by the number M of causality connection 
series in the cluster and the length of causality connection K (see Section 
2.2.1). Thus, O(f(SampEn) ) can be written as O(K ∗ M). 

Interestingly, the M here is inverse proportion to u, because the 
increasing number u of clusters will inevitably lead to less causality 
connection series in each cluster, and vice versa. Considering there is a 
total of 8100 causality connection series (90 ROIs*90 ROIs), the average 
M in each cluster here can be represented as 8100/u, and the overall 
temporal complexity T of SampEn computation is O(8100 ∗ S ∗ K) as 
derived in Eq. (12): 

T = O(u ∗ S) ∗ O(K ∗ M) = O(u ∗ S ∗ K ∗ M)

= O(u ∗ S ∗ K ∗ 8100/u) = O(8100 ∗ S ∗ K) (12) 

Considering that 8100 is an invariant constant, the temporal 
complexity of the proposed method is therefore linearly related to the 
number of subjects S and the length of causality connection K. 

3.5. Merits and limitations 

One of the merits is that, in comparison with the existed methods, the 
proposed method has a fine temporal sensitivity by introducing the 
sliding window. This can be verified by comparing the static causality 
network to the dynamic causality network. Fig. 6a shows a static cau-
sality network of an AD patient, which provides a global view for the 
causality connections between pairwise ROIs. Fig. 6b–g show the first six 
dynamic causality networks of the same patient in the same way. It can 
be clearly seen that the dynamic causality network in Fig. 6b–g shows 
much richer temporal variations of causality connections than that in 
Fig. 6a (Yellow indicates the strong causality connections in Fig. 6), with 
the strength of static causality connections fluctuating in a relatively 
limited range (2.14 ∼ 30.72), and the strength of dynamic causality 
connections varies in a wide range (0.01 ∼ 40.61). This is due to the 
difference of computation methods between static and dynamic cau-
sality connections, leading to different temporal sensitivities. Static 
causality connections are computed in terms of an entire BOLD signal 
series, which would mix the various types of fast neural activities, and 
obscure the detailed causality information. In contrast, dynamic cau-
sality connections are computed in terms of BOLD signal in a short 
sliding window, which can easily capture the spikes of causality strength 
in fine-grain time level. We can further observe the variations of cau-
sality connections as the sliding window move afterward. This would 
help to clarify the temporal properties of pathological biomarkers for AD 
patients. Compared with methods using entire BOLD signals, we can 

Fig. 5. The classification accuracy in terms of the similarity criterion r with 
SVM model. 

Table 2 
Performance comparison between our proposed framework and other methods.  

Method ACC (%) SEN (%) SPE (%) F1-Score 

PCN  71.92  74.07  70.00  0.7421 
DPCN  79.66  82.14  77.42  0.8000 
HOCN  88.14  89.66  86.67  0.8814 
CCN  74.58  83.33  65.51  0.7692 
Our proposed method  89.83  90.00  89.66  0.9000  
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capture the richer signal variations of neural activity in the brain, which 
helps to clarify the AD pathological biomarkers. 

The other merit of the proposed method lies in its ability to explore 
similar neural activities from different brain areas, by using agglomer-
ative hierarchical clustering. Fig. 7 shows the visualization of the clus-
tering process, with the original 15 dynamic causality connections in 
Fig. 7a, and their clusters indicated by three different colors in Fig. 7b. It 
can be seen that the causality series with different fluctuations consis-
tently fall into the clusters indicated in red, green, and blue, suggesting 
that the clustering algorithm correctly captures the dynamic charac-
teristics of the causality series, extracting various causality patterns of 
neural activities. 

The other merit of the proposed method lies in its ability to explore 
similar neural activities from different brain areas, by using agglomer-
ative hierarchical clustering. Fig. 7 shows the visualization of the 

clustering process, with the original 15 dynamic causality connections in 
Fig. 7a, and their clusters indicated by three different colors in Fig. 7b. It 
can be seen that the causality series with different fluctuations consis-
tently fall into the clusters indicated in red, green, and blue, suggesting 
that the clustering algorithm correctly captures the dynamic charac-
teristics of the causality series, extracting various causality patterns of 
neural activities. 

A limitation of the proposed method is the relatively high compu-
tational load. Due to the introduction of sliding window and directional 
causality connection, the temporal complexity of the proposed method 
is O(8100 ∗ S ∗ K) as described above. With the increase of S and/or K, 
the computational load is higher than those of conventional methods 
without the dynamic sliding window, e.g., PCN (O(4050 ∗ S)) using non- 
directional functional connectivity, and CCN (O(8100 ∗ S)) using 
directional causality connectivity, which is a potential demerit of our 

Fig. 6. (a) The static connectivity network and (b–g) the first six dynamic connectivity networks partitioned by a sliding window for one AD subject. The yellow 
denotes strong causality connection strength, and the blue denotes weak causality connection strength. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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method. In practice, considering a limited number of samples in the 
medical classification application, this computational load is acceptable, 
and can be lower by adjusting the length of the sliding window and its 
step. 

3.6. SampEn differences and their pathological implications 

To discover the difference of SampEn values between AD and CN, we 
applied dimensionality reduction by principal component analysis. We 
can see that the AD and CN groups’ features after dimensionality 
reduction are distributed with obvious distinction on a two-dimensional 
plane in Fig. 8a. The CN controls’ features mainly lie on the left side of 
the plane, and AD patients’ features are mainly located from the middle 
to the right of the plane. It also can be observed that the features of CN 
group are more concentratedly distributed than those of AD group. This 
may be due to that the CN controls have relatively consistent neural 
activity, while AD patients have poor neural activity consistency due to 
various brain function impairments. In Fig. 8b, the violin plot combines 
the box plot with density traces to exploit the difference of mean 
SampEn values between two groups. By the two-sample t-test using 
SPSS, we can find that the overall SampEn values of CN group 
(Mean ± SD:1.31 ± 0.086) are significantly higher than those of AD 
group (Mean ± SD:1.20 ± 0.095), t(57) = 4.660, p < 0.005). 

The top four discriminative clusters for classifying AD patients and 
CN controls are shown in Fig. 9. These clusters were selected in terms of 
their contributions to classification performances measured by the VIM 
method as described in 2.2.3, in terms of SampEn features of AD and CN 

groups. To exploit the difference between AD and CN groups of these 
four clusters, we performed a two-way ANOVA, with the SampEn values 
of the clusters of each subject as the dependent variable, and group (2 
levels, AD group or CN group) and cluster (4 levels, 4 clusters) as fixed 
factors. There is a significant main effect of group, F(1,228) = 80.55,
p < 0.001, η2

p = 0.26, indicating the lower SampEn values of AD group 
than those of CN group. There is also significant interaction between 
group and cluster, F(3, 228) = 3.65, p < 0.02, η2

p = 0.05, i.e., the 
SampEn difference between CN and AD groups in the cluster 1 (Mean-
= 0.41) is much greater than those in the clusters 2 (Mean = 0.24), 
cluster 3 (Mean = 0.17), and cluster 4 (Mean = 0.19) (See Fig. 9c), 
although the SampEn difference between AD and CN groups in four 
clusters are all significant, revealed by simple effect analysis (See  
Table 3). In addition to the statistical difference described above, we 
further observed that, although a cluster generally includes many cau-
sality series, only a few ROIs are the leading factors to interact with 
many other ROIs. For instance, there are only two leading ROIs, i.e., 
Hippocampus right (38) and Para hippocampal gyrus right (40) in the 
cluster 1 (Fig. 9(a), coral color), these two ROIs, however, cause cau-
sality interactions with eight ROIs (e.g., Superior frontal gyrus, Middle 
frontal gyrus, and Cingulate gyrus). This shows these specific ROIs may 
play pivotal roles in certain neural activity patterns, which are potential 
candidates for pathological biomarkers of AD. 

We select 12 ROIs in the top 4 discriminative clusters, which are 
distributed in Frontal lobe, Parietal lobe, and Temporal lobe. 10 of them 
are consistent with previous physiology studies (see Table 3). For 

Fig. 7. (a) Original causality time series and (b) their clustering results for one AD subject.  

Fig. 8. (a) The feature distributions and (b) the violin plot of AD and CN groups under the optimal parameters (cluster = 300; width of the sliding window = 20).  
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example, Echávarri et al. (2011) observed that Para hippocampal gyrus 
and hippocampus are important biomarkers, which favors the leading 
factors (i.e., Right Hippocampus, Right Para hippocampal gyrus) 
observed in the top two distinctive patterns – No.1 and No.2. Foundas 
et al. (1997) found AD have significant atrophy of insula than healthy 
controls. These studies further validate the effectiveness of our method 
and indicate that the physiological changes may cause a decrease in the 
complexity of neural activities. On the other hand, we also discovered 
two ROIs (i.e., temporal pole of middle temporal gyrus and left Post-
central gyrus) that haven’t been found in relevant physiology studies. 
These two ROIs are reported being related to emotional and social 
behavior, semantic presentation, memory, and language expression. 
Considering the AD patients also exhibit the clinical symptoms of these 
cognitive functions, these two areas are potential biomarkers for AD and 
require further investigations (Table 4). 

4. Conclusions 

In this study, we proposed an entropy-based measure of causality 
brain networks on the basis of the rs-fMRI data to classify AD and CN. 
The proposed method is able to efficiently discriminate AD and CN with 
an accuracy of 89.83% with SVM, which shows that SampEn of neural 
patterns can be used as promising features for AD classification. Also, we 
observed that the overall causality pattern’s SampEn values of the AD 
are significantly reduced compared with those of the CN, indicating a 
decreased complexity resulting from disrupted neural activities in AD 
patients. Furthermore, we found that, although the ROIs in the 
discriminative clusters are widely distributed in different brain regions, 

Fig. 9. (a) The top 4 most discriminative clusters described by chord chart (No.1 - coral, No.2 - Green, No.3 - Yellow, No.4 - Gray), (b) their locations in brain, and (c) 
the comparisons between of AD and CN groups for these four clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Table 3 
The mean and statistical results of the top 4 most discriminative clusters.  

No. Simple effect analysis CN (Mean ± SD)  AD (Mean ± SD)  

1 F(1, 228) = 53.01,p < 0.001  1.52 ± 0.24  1.11 ± 0.29  
2 F(1, 228) = 17.89,p < 0.001  1.33 ± 0.24  1.09 ± 0.20  
3 F(1, 228) = 8.95,p < 0.003  1.32 ± 0.21  1.15 ± 0.16  
4 F(1, 228) = 11.91,p < 0.001  1.38 ± 0.16  1.19 ± 0.19   

Table 4 
The ROIs selected from the top 4 discriminative clusters.  

ROI index ROI name Citations 

38 (1,2) Hippocampus right Echávarri et al. (2011) 
40 (1,2) Para hippocampal gyrus right Echávarri et al. (2011) 
42 (2) Amygdala right Poulin et al. (2011) 
56 (2) Fusiform right Caramelli et al. (1998) 
86 (2) Middle temporal gyrus right Bandaru et al. (2009) 
90 (2) Inferior temporal gyrus right Scheff et al. (2011) 
30 (3) Insula right Foundas et al. (1997) 
84 (3) Temporal pole: superior temporal gyrus right Hänggi et al. (2011) 
67 (4) Precuneus left Rami et al. (2012) 
68 (4) Precuneus Right Rami et al. (2012) 
69 (4) Paracentral lobule left Kang et al. (2013) 
70 (4) Paracentral lobule right Kang et al. (2013)  
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some of them (e.g., Right Hippocampus, Right Para hippocampal gyrus) 
serve as pivotal nodes in the causality network, and exhibit a one-to- 
many link to the other ROIs, accounting for neural distinctions be-
tween AD patients and CN controls. Our work provides an accurate and 
light framework for AD classification, and helps to get a better under-
standing of the neuropathological mechanism for AD. 
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